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Abstract: In the sphere of musical research, the intersection of two seemingly very dif-
ferent subject areas – music and mathematics – is in essence related to one of the trends 
of music – attributing the theory of music to science, to the sphere of mathematica. It is 
regarded the longest lasting interdisciplinary dialogue. The implication of numerical pro-
portions and number sequences in music composition of different epochs is closely related 
to this sphere. A significant role in creating music was attributed to the so-called infinite 
Fibonacci sequence. Perhaps the most important feature of the Fibonacci numbers, which 
attracted the attention of thinkers and creators of different epochs, is the fact that by means 
of the ratio between them it is possible to come maximally close to the Golden Ratio 
formula, which expresses the laws of nature. On a practical plane, often the climax, the 
most important part of any composition, matches the point of the Golden Ratio; groups of 
notes, rhythm, choice of tone pitches, grouping of measures, time signature, as well as 
proportions between a musical composition’s parts may be regulated according to Fibo-
nacci principles. The article presents three analytical cases – Chopin’s piano prelude, 
Bourgeois’ composition for organ and Reich’s minimalistic piece, attempting to render 
music composition structure to the logic of Fibonacci numbers.
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Introduction: Numerical Proportions in the Concept of Harmony of the 
Spheres

The idea of the art of sound being based on mathematics may be referred to 
by Gioseffo Zarlino as numero sonoro.  St. Thomas Aquinas’ phrase deserves 
mention within this context too – “music, which studies the ratios of audible 
sounds.”  The roots of this idea go back to Antiquity and the mathematical sub-
stantiation of the universe, as, for example, Aristotle stated: the criteria of beau-
ty, “orderly arrangement, proportion, and de  niteness”, are “especially mani-
fested by the mathematical sciences.”

From the perspective of a European perception, the Pythagoreans were al-
ready regarded to be the  rst to raise the issue of uniting music and mathematics, 
sound and number. They perceived music as an abstract sphere based on math-
ematical means, incorporating music into the universal harmony of numerical 
proportions.  Over the course of later epochs, this kind of music theory has been 
classi  ed as Latin musica theorica | theoretica | contemplativa | speculativa | 
arithmetica, etc. In the  rst dictionary of music written in the German language, 
Musikalisches Lexikon oder musikalische Bibliothek (1732), among different 
types of music, the type musica arithmetica is indicated, that is, arranging the 
sounds in proportions and numbers.

Considering the importance of proportions in music compositions of differ-
ent epochs we should get back to Antiquity, where the environment (cosmos) that 
surrounded man was treated as a creation of God. The cosmos was an example 
of perfect order or harmony due to the characteristics of regularities, symmetry 
and proportions, which were expressed in certain numerical relations.  This ex-

1 For the discussion on music as a mathematical science Zarlino devoted a chapter “Per qual 
cagione la Musica sia detta subalternata all‘Arithmetica, & mezanatra la mathematica, & la 
naturale” (Cap. 20) in his famous treatise The Harmonic Institutions (1558).
2 “Musica, quae considerat proportiones sonorum audibilium” was written in St. Thomas 
Aquinas’ Commentary on Aristotle’s Metaphysics, Bk. 3 Lsn 7 Sct 412, transl. John P. Row-
an, Chicago, 1961, 201.
3 The de  nition was presented by Aristotle in his Metaphysics (4th c. BC), Book 13, Part 3, 
1078a–1078b (transl. Hugh Tredennick); also quoted in Albert L. Blackwell’s The Sacred in 
Music, Westminster John Knox Press, 2000, 162.
4 It is stated that Pythagoras said: “There is geometry in the humming of strings. There is 
music in the spacing of the spheres.” The quotation was cited in: Louise B. Young’s The Mys-
tery of Matter, Oxford University Press, 1965, 113.
5 “Musica Arithmetica [lat.ital.] Musique Arithmetique [gall.] betrachtet die Klänge nach der 
Proportion, so sie mit den Zahlen Machen.” From: Johann Gottfried Walther, Musikalisches 
Lexikon oder musikalische Bibliothek, Leipzig, W. Deer, 1732, 431.
6 This is encoded in the very meaning of the word “cosmos”: Greek cosmos/κόσμος – order, 
orderly arrangement, a harmonious system.
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planation of universal harmony in terms of numbers, and making mathematical 
principles absolute, determined the originality of the aesthetics of the Pythago-
reans. For example, this is testi  ed to by the work written in c. 361 BC – Plato’s 
dialogue Timaeus – a work about a mathematically calculated idea of beauty and 
the importance of numerical relations to the creative process. This literary source 
talks about the harmony of the cosmos that is based on the relations between 
three proportions (arithmetic, geometric and harmonic),  because Demiurge, the 
Divine Craftsman, “made” the cosmic soul from a mixture divided according to 
the algorithms of the cosmic septenarius 1–2–3–4–8–9–27 and three proportions:

And he proceeded to divide in this manner: – First of all, he took away one part of 
the whole [1], and then he separated a second part which was double the first [2], and 
then he took away a third part which was half as much again as the second and three 
times as much as the first [3], and then he took a fourth part which was twice as much 
as the second [4], and a fifth part which was three times the third [9], and a sixth part 
which was eight times the first [8], and a seventh part which was twenty-seven times 
the first [27]. After this he filled up the double intervals [i.e. between 1, 2, 4, 8] and 
the triple [i.e. between 1, 3, 9, 27] cutting off yet other portions from the mixture and 
placing them in the intervals, so that in each interval there were two kinds of means, 
the one exceeding and exceeded by equal parts of its extremes [as for example 1, 4/3, 
2, in which the mean 4/3 is one-third of 1 more than 1, and one-third of 2 less than 
2], the other being that kind of mean which exceeds and is exceeded by an equal 
number. Where there were intervals of 3/2 and of 4/3 and of 9/8, made by the con-
necting terms in the former intervals, he filled up all the intervals of 4/3 with the 
interval of 9/8, leaving a fraction over; and the interval which this fraction expressed 
was in the ratio of 256 to 243.

7 The three proportions became one of the major principles of beauty (or harmony) and at-
tracted attention for their logical nature – a consistent “growing”. In arithmetic proportion, 
this growing is represented accordingly: the second dimension is larger than the  rst one as 
much as the third dimension is larger than the second, 1 : 1 ½ : 2 or 1 : 2 : 3. This is the sim-
plest proportion of numbers: 

0–1–2–3–4–5–6–7–8–9… or 0–2–4–6–8–10–12–14 … 

In geometric proportion, the ratio between the second and the  rst magnitudes coincides with 
that of the third and the second magnitudes: 1 : 2 : 4, because 1 : 2 = 2 : 4. The progression of 
numbers is formed accordingly: 

1–2–4–8–16–32–64–128 …

A complicated harmonic proportion expresses the relationship between the following three 
numbers: a, 2ab : (a+b), and b, where the third number is larger than the second one by such 
a part of its size as the second number is larger than the  rst one by the same part of the size 
of the  rst. For example:
1 : 4/3 : 2 or 3 : 4 : 6.
8 Quote from Plato’s Timaeus, 35b–36b, transl. by Benjamin Jowett, published in: The Di-
alogues of Plato, Vol. 3: The Republic, Timaeus, Critias, 3rd ed., Oxford University Press, 
London, Humphrey Milford, 1892, 36).
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Having compared the creative process described by Plato and the Pythagorean 
system of numerical relations of musical intervals, it becomes clear that music 
participated inseparably in the creation of the world. This is because the propor-
tions of “decomposing the mixture” used in Demiurge’s work are identical to the 
numerical relations of musical intervals described by the Pythagoreans:

2 : 1 as the perfect octave, 

3 : 2 as the perfect  fth, 

4 : 3 as the perfect fourth, 

9 : 8 (3/2 : 4/3) as the whole tone.  

9 The history of a numerical substantiation of musical intervals is rephrased by a legend 
about Pythagoras. Here it is a retelling by Manly Palmer Hall in 1928 in his book The Secret 
Teachings of All Ages: 

One day while meditating upon the problem of harmony, Pythagoras chanced to pass 
a brazier’s shop where workmen were pounding out a piece of metal upon an anvil. 
By noting the variances in pitch between the sounds made by large hammers and those 
made by smaller implements, and carefully estimating the harmonies and discords re-
sulting from combinations of these sounds, he gained his  rst clue to the musical inter-
vals of the diatonic scale. He entered the shop, and after carefully examining the tools 
and making mental note of their weights, returned to his own house and constructed 
an arm of wood so that it: extended out from the wall of his room. At regular intervals 
along this arm he attached four cords, all of like composition, size, and weight. To the 
 rst of these he attached a twelve-pound weight, to the second a nine-pound weight, to 

the third an eight-pound weight, and to the fourth a six-pound weight. These different 
weights corresponded to the sizes of the braziers’ hammers.

Pythagoras thereupon discovered that the  rst and fourth strings when sounded together 
produced the harmonic interval of the octave, for doubling the weight had the same 
effect as halving the string. The tension of the  rst string being twice that of the fourth 
string, their ratio was said to be 2:1, or duple. By similar experimentation he ascertained 
that the  rst and third string produced the harmony of the diapente, or the interval of the 
 fth. The tension of the  rst string being half again as much as that of the third string, 

their ratio was said to be 3:2, or sesquialter. Likewise the second and fourth strings, 
having the same ratio as the  rst and third strings, yielded a diapente harmony. Continu-
ing his investigation, Pythagoras discovered that the  rst and second strings produced 
the harmony of the diatessaron, or the interval of the third; and the tension of the  rst 
string being a third greater than that of the second string, their ratio was said to be 4:3, 
or sesquitercian. The third and fourth strings, having the same ratio as the  rst and sec-
ond strings, produced another harmony of the diatessaron. According to Iamblichus, the 
second and third strings had the ratio of 8:9, or epogdoan.

From: Manly Palmer Hall, The Secret Teachings of All Ages. An Encyclopedic Outline 
of Masonic, Hermetic, Qabbalistic and Rosicrucian Symbolical Philosophy, Chapter 16 
“The Pythagorean Theory of Music and Color”, Los Angeles, Philosophical Research 
Society, 1928, 81, http://www.sacred-texts.com/eso/sta/sta19.htm [2017-09-07])
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According to the Pythagoreans, these matches in  uenced the material propor-
tions of the four elements – the primary conditions that were necessary for 
man’s existence – earth, air, water and  re: earth was made up of four of its 
own parts, water was made up of three parts earth and one part  re, air was 
made up of three parts  re and one part earth, while  re was made up of four 
of its own parts. Moreover, in Antiquity the positioning of the known heavenly 
bodies (planets and stars) generated a harmonious sound, because their distances 
were related to the numerical relationships of musical intervals. This concept 
was named the Harmony of the Spheres.  With the reference to Macrobius and 
others, Manly P. Hall states, that according this concept the distance between 
the heavenly bodies created the “sound” of tones and semitones and the seven 
vowel letters of the Greek alphabet; in addition, each planet was compared to a 
concrete musical tone, number, color  and geometric form; each “sounded” one 
of the seven Greek modes (see Example 1).  

The Pythagoreans believed that everything which existed had a voice and that all 
creatures were eternally singing the praise of the Creator. Man fails to hear these 
divine melodies because his soul is enmeshed in the illusion of material existence. 
When he liberates himself from the bondage of the lower world with its sense limi-

tations, the music of the spheres will again be audible as it was in the Golden Age.  

The testimonies by ancient scholars (e.g. Iamblichus, Pliny, Irenaeus, Macrobi-
us, Martianus Capella, etc.) provide various approaches to the same focus (for 
example, the equivalence of a particular planet to the music mode or concrete 
note). This con  rms a rich diversity in forming and interpreting the ancient con-

Heinrich Husmann described the creation process of musical intervals and their numerical 
equivalents using a one-string instrument called monochord. For example, if we put a  nger 
on the half of string (thus, dividing the string in half or 2 : 1), we may hear the interval of 
the octave; if we put a  nger on two thirds of the string (3 : 2) – the interval of the  fth, and 
so forth. For more information, see: Heinrich Husmann, Grundlagen der Antiken und Orien-
talischen Musikkultur, Berlin, Walter de Gruyter, 1961, 9–19.
10 Other expressions meaning the universal harmony | universal music: German Sphärenhar-
monie, Sphärenmusik, English Music of the Spheres, Latin musica universalis (the concept 
universus [global, all in one] is adapted as an expression of the world, or the Cosmos).
11 “The ancient city of Ecbatana as described by Herodotus, its seven walls colored accord-
ing to the seven planets, revealed the knowledge of this subject possessed by the Persian 
Magi. The famous zikkurat or astronomical tower of the god Nebo at Borsippa ascended in 
seven great steps or stages, each step being painted in the key color of one of the planetary 
bodies.” Manly Palmer Hall, op. cit., 84.
12 Ibid., 82–83.
13 Ibid., 83.
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cept of the Harmony of the Spheres. Moreover, the vitality of this universal idea 
was so potent that it spread over the later epochs.  

Example 1: Illustration of relationships between the four elements, heavenly bodies, 

musical intervals, notes and colors15 

14 For example, Thomas Morley in his Plaine and Easie Introduction to Practicall Musicke 
(1597), created a chart that illustrated the perfect system of relationships between planets, 
goddesses, musical modes and Greek ideals of perfection. Robert Fludd presented a diagram 
of musical elements, repeating the Pythagorean musical intervals and the idea of harmonious 
relationship between the four elements (De Musica Mundana, 1618). In Harmonices mundi 
(1619) Johannes Kepler described his theory of the mathematical movements of planets and 
wrote out the movement of planets in notes, arguing that the oval trajectory of the move-
ment of planets creates melody (a musical illustration with “sounding” Saturn, Jupiter, Mars, 
Earth, Venus and Mercury was presented in his Book V, 207).
15 The information was systematized by the author of this article – R. P.

Relations between 4 elements 
pair of 
elements 

formula interval 

fire : earth 1 : 2 perfect octave 
fire : air 1 : 4/3 perfect fourth 
fire : water 1 : 3/2 perfect fifth 
air : water 4/3 : 3/2 whole tone 
 
Relations between heavenly bodies 
pair of planets interval 
Earth : Moon whole tone 
Moon : Mercury semitone 
Mercury : Venus semitone 
Venus : Sun whole & semitone 
Sun : Mars whole tone 
Mars : Jupiter semitone 
Jupiter : Saturn semitone 
Saturn : any star semitone 

sphere Greek vowel 
1st heaven Α, α (Alpha) 
2nd heaven Ε, ε (Epsilon) 
3rd heaven Η, η (Eta) 
4th heaven Ι, ι (Iota) 
5th heaven Ο, ο (Omicron) 
6th heaven Υ, υ (Upsilon) 
7th heaven Ω, ω (Omega) 
 
planet note color 
Mars do red 
Sun re orange 
Mercury mi yellow 
Saturn fa green 
Jupiter sol blue 
Venus la indigo 
Moon  si (ti) violet 
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Fibonacci Sequence: Historic-aesthetic Establishment 

The considerations regarding numerical formulas and relationships was a point 
of permanent interest in the philosophical, aesthetic or academic sphere as well 
as on the practical plane, where the expression of proportions and / or com-
posing according to them was regarded as the veri  cation of perfect art work. 
For example, in the Renaissance the admiration for pure proportions of numbers 
were manifested as perspective in art, and striving for symmetry in architecture. 
Numerical proportions amply mentioned in the treatises on music during the Re-
naissance show that the mathematical aspect in music has survived as the main 
factor of beauty that is only slightly affected by the conception of sacrality.  

A signi  cant role in creating music was attributed to the so-called in  nite 
Fibonacci sequence – a mathematical proportion attributed to the mathematician 
of the 13th century Fibonacci (also referred to as Leonardo Pisano, Leonardo da 
Pisa, 1180–1250), who represented the principle of nature / evolution – the pro-
cess of the reproduction of rabbits: how many young one pair of rabbits will pro-
duce per year, bearing in mind the fact that all the young will survive and repro-
duce further. Fibonacci, having summed up the number of rabbits of each month, 
obtained an in  nite number progression 1–1–2–3–5–8–13–21 and so on.  

It should be noted, that there are many more earlier testimonies regarding 
the establishment of the famous number series. The most frequent reference is 
made to the scholar and philosopher of the Middle Ages, Boethius, as being the 
 rst to mention the Fibonacci sequence in the second book of his De Institutione 

Arithmetica (the beginning of the 5th c.). However, it was a translation of Nico-
machus’ Introduction to Arithmetics, written at the intersection of the 1st and 2nd 
centuries. In the second book of this treatise we may  nd an ancient reference 
to certain Fibonacci numbers. It is the description of the tenth neo-Pythagorean 
proportion, as Nicomachus argues: 

The tenth, in the full list, which concludes them all, and the fourth in the series pre-
sented by the moderns, is seen when, among three terms, as the mean is to the lesser, 

16 For example, in the treatise Proportionale musices (c. 1472–5) Johannes Tinctoris stated 
that proportions existed in everything, because “it was God who created them.” He classi  ed 
the proportions applied to the creation of music into  ve types: 1) the genus multiplex group 
made up of a formula n : 1 (2 : 1, 3 : 1, 4 : 1 and so on); 2) the genus superparticularis group, 
n + 1 : n (2 : 1, 3 : 2, 4 : 3 and so on); 3) the genus superpartiens group (n + 2 : n, n + 3 : n, n 
+ 4 : n and so on); 4) the genus multiplex superparticulare group (n x m + 1 : n); 5) the genus 
multiplex superpartiens group (n x m + 2 : n, n x m + 3 : n, n x m + 4 : n and so on).
17 It is the recurrent sequence of the second order (denoted F

1
, F

2
, …, F

n
). The term n + 2 is 

equal to the sum of the two preceding terms (n and n + 1). The formula of progression: F
n + 2

 
= F

n + 1
 + F

n
, where n > 0.
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so the difference of the extremes is to the difference of the greater terms, as 3, 5, 8, 

for it is the superbipartient ratio in each pair.18

Latin version by Boethius:

Quarta vero quae in ordine decima est consideratur in tribus terminis: cum tali pro-
portione medius terminus ad parvissimum comparatur: quali extremorum differentia 
contra maiorum terminorum differentiam proportione coniungitur, ut sunt tres quin-
que octo. Quinarius enim medius terminus ad ternarium superbipartiens est. Ex-
tremorum vero differentia octonarij scilicet et ternarij quinarius qui comparatus 
contra maiorum terminorum differentiam scilicet quinarij et octonarij qui est terna-

rius: et ipse quoque superbipartiens invenitur.19

Example 2: Page extract from Boethius’ De Institutione Arithmetica (1488) with the de-
scription of Nicomachus’ tenth proportion

18 Nicomachus of Gerasa, Introduction to Arithmetic (trans. Martin Luther D’Ooge), New 
York, The Macmillan Company, 1926, 284.
19 Arithmetica Boetij, Augsburg: Erhard Ratdolt, 1488, Lap. 52. 



78

New Sound 50, II/2017

Though, the origins of this number sequence date back to the 3rd century BC and 
may be attributed to Euclid’s ideas about a certain relationship described in the 
sixth book of his Elements (c. 300 BC). Yet this special proportion, naming it an 
“extreme and mean ratio”, was not analyzed as a particular row of numbers. The 
Greek mathematician relied on lines and inter-relationships between geometric 
constructions, as stated in the de  nition: 

A straight-line is said to have been cut in an extreme and mean ratio when as the 

whole is to the greater segment so is the greater (segment is) to the less.20

According to Ruth Tatlow, using a similar principle based on particular numbers 
in the 13th century, Fibonacci did not notice links between his discovery and 
Euclid’s “special proportions” and did not denote that his numbers have “special 
relationships”.  Moreover, the rules of the Fibonacci sequence may be applied 
to any sequence of numbers in which each new number is the sum of the two 
previous numbers. For example, the Lucas integer series, which was named after 
the 19th century French mathematician Édouard Lucas, and Série Évangélique, 
the latter based on the text of the Holy Bible:

Lucas progression 2 – 1 – 3 (2 + 1) – 4 (1 + 3) – 7 (3 + 4) – 11–18 – 29–47 
– 76–123 and so on

Série Évangélique 2 – 5 – 7 (2 + 5) – 12 (5 + 7) – 19 (7 + 12) – 31–50 – 
81–131 and so on

20 Euclid’s Elements of Geometry, edited and provided with a modern English translation 
by Richard Fitzpatrick, 2007, 156, http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf 
[2017-09-07].

For example, the line AB is cut at C since AB : AC = AC : CB:

21 Ruth Tatlow, “The Use and Abuse of Fibonacci Numbers and the Golden Section in Musi-
cology Today”, in: Understanding Bach, Vol. 1, 2006, 77.
22 The  rst numbers of Série Évangélique, 2, 5 and 12, were taken from the Gospel accord-
ing to John (6, 9–13):

There is a boy here who has  ve barley loaves and two  sh, […] Jesus said, “Have the 
people sit down.” Now there was much grass in the place. So, the men sat down, about 
 ve thousand in number. […] And when they had eaten their  ll, he told his disciples, 

“Gather up the leftover fragments, that nothing may be lost.” So they gathered them up 
and  lled twelve baskets with fragments from the  ve barley loaves left by those who 
had eaten.

23 It is important to note, that both progressions, Lucas and Série Évangélique, are directly 
derived from the numbers of Fibonacci sequence using the formulas F

n + 1
 and F

n – 1
 (For more 

information see: Newman W. Powel, “Fibonacci and the Gold Mean: Rumbas, Rabbits and 
Rondeaux”, Journal of Music Theory, No. 23, 1979, 231).



 Povilionienė, R., Musica Fibonacciana: Aesthetic and Practical Approach

79

Though what made the numerical series exclusive, which attracted the at-
tention of thinkers and creators of different epochs? Perhaps the most important 
feature of the Fibonacci progression is the fact that by means of the ratio be-
tween them it is possible to come maximally close to the Golden Ratio formula, 
which expresses the laws of nature.  We may  nd a statement on it in the trea-
tise De Divina Proportione (1509) by Luca Pacioli, naming this formula “the di-
vine proportion”. However, in 1890 Karl Fink indicated, that the establishment 
of Golden Section symbolism is attributed to astronomer Johannes Kepler, who 
“introduced the designation sectio divina as well as proportio divina” in the be-
ginning of the 18th century:

[Reciting Kepler] Geometry has two great treasures: one is the theorem of Pythago-
ras, the other the division of a line into extreme and mean ratio. The first we may 
compare to a mass of gold, the second we may call a precious jewel.25

As Fink states:

The expression “golden section” is of more modern origin. It occurs in none of the 
text-books of the eighteenth century and appears to have been formed by a transfer 
from ordinary arithmetic. In the arithmetic of the sixteenth and seventeenth centuries 
the rule of three is frequently called the “golden rule”. Since the beginning of the 
nineteenth century this golden rule has given way more and more before the so-called 
Schlussrechnen (analysis) of the Pestalozzi school. Consequently in place of the 
“golden rule”, which is no longer known to the arithmetics, there appeared in the 
elementary geometries about the middle of the nineteenth century the “golden sec-
tion”, probably in connection with contemporary endeavors to attribute to this ge-

ometric construction the importance of a natural law.

The conception of the Golden Ratio appeared in 1835 when the German math-
ematician Martin Ohm named the so-called “constant proportion” (German ste-
tige Proportion) the Goldener Schnitt. Respectively, the very sequence of num-
bers was named after Fibonacci and was related to the phenomenon of the Gold-
en Ratio only in the 19th century.

24 Golden Ratio – Latin sectio aurea, sectio divina, German Goldener Schnitt – is expressed 
in terms of the formula n x 0.618. The fraction 0.618 was obtained having evaluated the ra-
tios between the Fibonacci numbers. It became more accurate the more distant the pairs of 
Fibonacci numbers calculated, because 3 : 5 = 0.6; 5 : 8 = 0.625; 8 : 13 = 0.61538461…; 13 : 
21 = 0.61904761…; 21 : 34 = 0.61764705… and so on.
25 Karl Fink, A Brief History of Mathematics, (Transl. Wooster Woodruff Beman & David 
Eugene Smith), Chicago: The Open Court Publishing Company, 1990, 223. Original publica-
tion in German: Karl Fink, Geschichte der Elementar-Mathematik, 1890.
26 Ibid., 223. 
27 In 1857, the Prince of Italy, the mathematician and historian Baldassarre Boncompagni, 
published a medieval treatise; in 1878, the French mathematician Edouard Lucas, having 
become acquainted with the treatise, named the said sequence the Fibonacci Sequence.
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Fibonacci Manifestation in Music Composing 

The Golden Ratio became the benchmark and the goal, and the guarantee, of 
perfect art. According to the measurements of the Golden Ratio, buildings 
were constructed, parks were planned, compositional details were applied to 
painting, and poetic stanzas were constructed. In music the formula of god-
ly beauty symbolized a perfectly formed composition. Often the climax, the 
most important part of any composition, matched the point of the Golden Ra-
tio. Sounds were organized and regulated according to Fibonacci principles of 
numeric progression, and so on. For example, while analyzing the structure of 
two vocal ballads from the Middle Ages, Dame, se vous m’estes lonteinne and 
Je ne croy pas c’onques a creature, by Guillaume de Machaut, Pozzi Escot 
shows that the limits of the structural parts adhere to the Golden Ratio (Escot 
1999: 43, 51).

During the 19th century, which we may call the culmination of the antagonism 
between music and mathematics, where anti-rationalism was especially strong 
and where it would seem that emotionality was especially important, Fibonac-
ci numbers and the Golden Ratio prevail nonetheless. Charles Madden indicates 
their presence in the structure of the  rst part of Beethoven’s Fifth symphony,  as 
well as its characteristic for the structures of the compositions of Debussy.  The 
work by this French composer can be described as a medley of impressionistic 
tonal images and emotion. However, he has been quoted as stating: 

Music is the arithmetic of sounds as optics is the geometry of light.

Roy Howat, while analyzing Debussy’s Dialogue du vent et de la mer or the 
 rst piece Re  ets dans l’eau, notes that the same wave in their structure can be 

seen in Katsushika Hokusai’s colored woodcut The Great Wave off Kanagawa 
(1831), which illustrates the phenomenon of the Golden Ratio.  According to 
Allan W. Atlas, structural and harmonic changes are important in the duets, arias, 
and orchestral interludes of Puccini’s opera La boheme and re  ect the relation-
ship of the Golden Ratio.

28 Charles Madden, Fib and Phi in Music: The Golden Proportion in Musical Form, High 
Art Press, 2005. 
29 For example see: Roy Howat, Debussy in Proportion, Cambridge, 1983; Irina Soussidko, 
“Metrotektonik und Goldener Schnitt. Debussy 24 Preludes für Klavier”, Musik & Ästhetik, 
6. Jahrgang, Heft 24, 2002, 5–19.
30 Dean Keith Simonton, Greatness: Who Makes History and Why, Guilford Press, 1994, 110.
31 Roy Howat, op. cit., 23–9, 93–109.
32 Allan W. Atlas, “Stealing a Kiss at the Golden Section: Pacing and Proportion in the Act I 
Love Duet of La Boheme”, in: Acta Musicologica, Vol. 2, 2003, 269–291.
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In the practice of contemporary music composition an especially active and 
conscious organization of sound space can be witnessed in the Fibonacci num-
bers. Most likely the attention of composers is drawn to this phenomenon by the 
opportunity to create asymmetry and irregularity in their music and to break me-
chanical proportions, because, as Valeria Cenova states, such a sequence allows 
music to “breathe”.  The research has shown that the models of proportions are 
often used to organize the musical rhythm. Already in the beginning of the 20th 
century, composers accepted the Fibonacci sequence and the phenomenon of 
the Golden Ratio as a composition’s standard of perfection. To paraphrase Emil 
Rozenov, even stylistically different musical compositions share the same quali-
ty – the manifestation of the Golden Ratio, which controls the music material as 
an expression of natural beauty.

Ernő Lendvai also believed that the Golden Ratio is probably the most im-
portant aspect of a musical composition’s architectonics and that it in  uences all 
of a composition’s parameters. He researched and identi  ed the impact of the 
Golden Ratio in the choice of climax, tone pitches, musical rhythm, grouping 
of measures, time signature, as well as proportions between a musical composi-
tion’s parts, focusing on the work of Bartók, especially on his Music for Strings, 
Percussion and Celesta (1936).

As Diane Luchese states, another Hungarian composer Ligeti in his piece 
for organ Volumina (1961–2), applied the logic of the Golden Ratio to the du-
ration of sections with different types of clusters (more see Luchese 1988). Ac-
cording to Ligeti himself, certain Fibonacci numbers are important to the struc-
ture of the  rst section of his Apparitions for orchestra (1958–9): in m. 71, at 
the 144th quarter note, as the bass plays tremolo, the  rst part is divided into two 
sections; in the second section a striking change in timbre occurs analogously in 
this sections’ 55th quarter note – here an uninterrupted cluster comes in, which 
plays until the very end of the  rst part. The initial Fibonacci numbers, 1, 2, 3, 5, 
8, and 13, also dominate the structure of Spanish composer Cristobal Halffter’s 
Fibonaciana, Concert for  ute and orchestra (1969). 

How Fibonacci numbers can in  uence a composition’s rhythmic design 
is illustrated by So  a Gubaidulina’s ensemble for percussion In the Beginning 
there was Rhythm (1984): the numbers 1, 2, 3, 5, 8 pop out in the rhythm of 
the kettledrum solo. In Gubaidulina’s twelve-part composition for symphony or-
chestra I hear… Silence… (1986), in the odd-numbered parts I, III, V and VII, 
Fibonacci numbers dictate the time signatures accordingly: 144/4, 89/4, 55/4 

33 Валерия C. Ценова, Числовые тайны музыки Софии Губайдулиной [Numerical Se-
crets in the Music of So  a Gubaidulina], Moscow, Moscow Conservatoire, 2000, 51.
34 Эмилий Карлович Poзенов, Статьи о музыке [Articles on Music], Moscow, 1982, 120–1.
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and 34/4; in the part IX, as the composition’s silent culmination – in the mute 
space the conductor’s hands follow the rhythm according to the Fibonacci se-
quence (each of the gestures is schemed in detail by the composer).

Lithuanian composer Osvaldas Balakauskas is regarded as “an individual 
who has been at the pinnacle of modern Lithuanian music since the mid-1960s, 
as well as being one of the most remarkable composers and leading authorities” 
and “belongs to the rare circle of composers whose ambition is the creation of 
their own precise musical system”.  His Second symphony (1979) is an exam-
ple of logic and rational musical thinking. For the segmentation of tone scale 
and the organization of the progressive rhythm the composer appllied a slightly 
transformed Fibonacci sequence with the  rst numbers 1, 2, 3, 5, 8, and 14 (the 
latter number does not belong in the sequence).  

Cases of Fibonacci numbers application

Prelude No. 1 in C major, Op. 28 (1838–9) by Frederic Chopin

The Fibonacci sequence may become the key to interpreting the structure of 
Frederic Chopin’s (1810–1849) preludes as well.  In this article I would like 
to present an analysis of Prelude No. 1 in C major, Op. 28, that shows several 
instances in which Fibonacci numbers 8, 13, 21, and 34 make an appearance. 
This miniature composed for piano according to the form of the period is made 
of two phrases consisting of 8 and 16 measures, in addition to the establishment 
of C major in a 10 measure coda. 

The analysis was focused on the signi  cant musical signs (such as the high-
est/lowest pitch, climax, changes in harmony, etc.) taking into account the place 
of their appearance – particular measure. The following structural points re-
vealed the existence of Fibonacci numbers: 

1)  in the 8th measure the lowest tone of the prelude is reached, the tone G
1
 (con-

tra-octave sol), 

35 For more information see: Валерия C. Ценова, op. cit.
36 More about Osvaldas Balakauskas see of  cial Lithuanian composers’ presentation by 
Music Information Centre Lithuania: http://www.mic.lt/en/database/classical/composers/bal-
akauskas/.
37 A comprehensive study on Balakauskas’ work (Osvaldas Balakauskas: Muzika ir mintys 
[Music and Ideas], Rūta Gaidamavičiūtė (Ed.), Vilnius, Baltos lankos, 2000) presents a wide 
spectrum of his composing technique. On the Second symphony see especially an article 
by Gražina Daunoravičienė “Kompozicinės technikos algoritmai: Antroji simfonija ir Dada 
concerto” [Algorithms of Compositional Technique: The Second Symphony and Dada Con-
certo], 71–122.
38 More about preludes see: Kenneth Patrick Kirk, The Golden Ratio in Chopin’s Preludes, 
Opus 28, Doctoral Dissertation, Ann Arbor Mich, UMI, 2001.
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2)  in the 13th measure the  rst meaningful step towards harmony is taken, a 
modulation to D minor, 

3)  from the same measure (13) the diatonic picture of the composition is changed 
by the chromatic melody rising from c-sharp2 to c3 and then deepened by re-
lief of a modulation,

4)  in the 21st measure the highest tone of the prelude sounds, d3, 

5) the 21st measure is the climax of the entire prelude,

6)  in the mentioned measure the chromatic movement of the melody is changed 
by a diatonic movement downwards;

7) the prelude is made up of 34 measures.
Prelude analysis is presented in the Example 3, highlighting the points of 

Fibonacci numbers  performance.

m. 8: 
the lowest 

tone 

m. 21: 
the highest 
tone d3

m. 21:
climax of prelude

m. 13: modulation 
to D minor

chromatic 
ascension 

from 
c-sharp2 

to c3

total 
34 measures

Agitato

simile
7

14

(dim.)

21

28

cresc.

stretto

(      )

(      )

cresc.

21

Example 3: Structural analysis of Chopin’s Prelude No. 1 C major, Op. 28
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Derek Bourgeois. Symphony for Organ, Op. 48 (1975)

The especially proli  c English composer Derek Bourgeois (born 1941) dedi-
cated the third part of his Symphony for Organ (1975) to Fibonacci and titled it 
Passacaglia di Fibonacci. Having completed an analysis of the score, it became 
apparent that the various parameters of the composition were in  uenced by the 
Fibonacci numerical algorithm. They are the following:

1) the entire part is made up of 144 measures,

2) the composer uses 13 different time signatures,

3) the time signatures are written using Fibonacci numbers:

1/8, 2/8, 3/8, 5/8, 8/8, 13/8, etc.

4) the third part has inscriptions of  ve tempo markings,

5) tempo marking Largo maestoso lasts 8 measures,

6) marking l’isteso tempo lasts 5 measures, 

7) the 24-tone subject’s length in measures is 13.

The subject is continually repeated as basso ostinato. The arrangement of its 
melody-line in semitones is worth its own discussion, because an internal logic 
at  rst is hardly noticeable and sounds even chaotic. Firstly it is suggested to 
transcribe the intervals of melody-line into numerical row. Therefore we get a 
number sequence as follows:

1–1–2–3–7–8–1–3–2–7–7–0–5–7–2–3–1–4–7–9–10–11–11

 1   1  2   3 7    8  1  3  2   7 7   0  5  7   2   3  1   4  7    9  10    11  11
m2    m2  M2   m3  P5      m6  m2  m3  M2   P5 P5     P1  P4  P5    M2    m3  m2    M3 P5      M6    m7        M7     M7

Example 4: 24-tone subject and its numerical transcription. Bourgeois, Symphony for 
Organ, Op. 48, part 3 Passacaglia di Fibonacci, mm. 14–28

At a  rst glance the row looks like an irrational interchange of certain numbers. 
But in fact the melody is constructed according to the “hidden” symmetrical 
relationship between tones, which is explained with the help of Fibonacci num-
bers. Some members in the row above (like 4, 7, 9, 10 and 11) are not of the 
Fibonacci sequence. That is because the range in semitones of a few intervals 
does not match the Fibonacci numbers – that is the major third (M3, its range in 
semitones is 4), the  fth (P5, 7 semitones), the major sixth (M6, 9 semitones), 
and the minor and major sevenths (m7, 10 semitones, & M7, 11 semitones). 
However, the inversion of these music intervals and respectively the new range 
in semitones matches the Fibonacci numbers. Because, the M3 inversion is a 
minor sixth, whose range is 8 semitones; correspondingly, the P5 inversion is 
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a perfect fourth and the range in semitones is 5; M6 inversion is a minor third 
(3 semitones); m7 inversion is major second and 2 semitones; and  nally M7 
inversion is a minor second and 1 semitone. Moreover, the numerical sequence, 
rewritten in Fibonacci numbers, exposes a mirror symmetry, and its center is 
marked by the only perfect unison with zero:

1 1 2 3 5 8 1 3 2 5 5 0 5 5 2 3 1 8 5 3 2 1 1 
    (7)     (7) (7)   (7)    (4) (7) (9) (10) (11) (11) 

m2 m2 M2 m3 P4 m6 m2 m3 M2 P4 P4 P1 P4 P4 M2 m3 m2 m6 P4 m3 M2 m2 m2 
    P5     P5 P5   P5    M3 P5 M6 m7 M7 M7 

Example 5: Arrangement of musical intervals of the 24-tone subject according to Fibo-
nacci numbers

This observation allows one to surmise that the composer did not seek to use 
Fibonacci numbers in an obvious manner, but rather in a creative one. A similar 
incentive to creativity can be explained by the impact of the Fibonacci numbers 
on the time parameter: the number of measures are not recorded as usual (every 
5 or 10 measures), but in those parts of the score that correlate with Fibonacci 
numbers. Bourgeois had an even cleverer idea by trying to hide Fibonacci num-
bers, by looking at the logic of sections 3, 4, and 5. Their volume in measures 
(respectively 65, 24, and 10) does not correspond to the Fibonacci numbers. 
However, if one were to remove the number 10 (extent of section 5) from the 
number of measures of section 3 (65 measures) or if one were to add the number 
10 to the section 4 (24 measures), we would get Fibonacci numbers 55 and 34:

Sections  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20

Meter signatures 8   5   3   5   8  13  3  21 13   8    5    3    2    1    1    2    3    5    8   13
8   8   4   4   4   4   4   4   4    4    4    4    4    4    8    8    8    8    8    8

Number of bars 8   5  65 24 10  3 13 3  2   1   1   1   1   1   1   1   1   1   1   1  
Total

            –   + 
              144

           10 10
           55 34

Example 6: Arrangement of time signatures and number of measures of sections ac-
cording to Fibonacci numbers in Bourgeois’ Symphony for organ, part 3 Passacaglia di 

Fibonacci
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Steve Reich. Clapping Music (1972)

I would like to argue that one of the approaches analyzing the structure of Re-
ich’s Clapping Music (1972) could be the application of Fibonacci numbers, 
arithmetic progression and the laws of symmetry. This compact piece,  rst of 
all, sounds like a diversity of complex rhythmic models, little by little moving 
from the overlapping accents to the chaotic disagreement of two clapping per-
formers. However, the rhythmic complexity is directed by a strict inner logic. 
For example, the arithmetic progression is characteristic for the structure of the 
basic rhythmic pattern, which the  rst performer claps consistently. It is because 
the tones, rests, and total number of elements are in the relationship of 4 : 8 : 12, 
where 4 is the sum of eighth note rests, 8 is the sum of eighth notes, and 12 is the 
total sum of musical elements; accordingly → 1 : 2 : 3.

4 8 12
1 : 2 : 3

4

8

Example 7: Arrangement of basic rhythmic pattern according to arithmetic progression, 
Reich’s Clapping Music

If we have a look at the second performer’s score, one can see the manifestation 
of mirror symmetry. This part of the piece is composed of a basic rhythmic pat-
tern and 11 of its cyclic permutations. The permutations are created consistently 
by carrying the  rst member to the end. The symmetry was established in the 
number sequence, which was written down after having counted the number of 
clapping tones of the second performer from one rest to the next. The symmetri-
cal number row is presented in a graphic diagram (see Example 8).
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clap 2

1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 1 3 4 5 6 7 8 9 10 11 12 1 2

4 5 6 7 8 9 10 11 12 1 2 3 etc. . . . . .

etc.

permutation: 
the first member goes to the end

 3 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 5 1 2 3 1 1 2 3 1 1 2 3 3 2 3 2 2 3 2 3 3 2 1 1 3 2 1 1 3 2 1 5 2 1 2

mirror symmetry in the grouping of eighth notes

3  2     1     2  2 2     1     2         2        2     1     2     2 

 2 1     2      5   1 2  3        1    1    2    3    1 ...

symmetrical row starts here

CENTRE

Example 8: Manifestation of mirror symmetry in the part of the 2nd performer (the 
numbers indicate the quantity of clapping tones between the rests), Reich’s Clapping 

Music

What about the possible manifestation of Fibonacci logic? Let us look at the 
rhythmic invariant of the piece that is made up of 8 eighth notes. The eighth 
rests divide the row of notes into four sections according to the following: 3 + 
2 + 1 + 2. Thus we get a combination of the  rst Fibonacci numbers 1, 2, 3, (5), 
and 8 (see Example 9).

3
5

8

2 1
3

2

Example 9: Exposition of Fibonacci numbers, analyzing the basic rhythmic pattern in 
Reich’s Clapping Music
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Could Fibonacci numbers in  uence other structural parameters as well? If we 
have a look at the length of the piece, we see a total of 13 measures, of which 12 
are different from each other, plus at the end, the composer indicates the need to 
repeat bar 1. Further. I would make an observation regarding time signatures. A 
widely used 1980 Universal Edition printed score provides tempo inscriptions 
– numbers 160 and 184. However, the numbers are different compared to the 
very  rst intention. Because the 1972 December (re-copied in January 1978) 
manuscript included two time signatures 144 and 168. Evidently the  rst one is 
the 12th member of the Fibonacci row (F

12
), whereas the second time signature 

– 168 – does not belong to the Fibonacci numbers, but... is a result of the multi-
plication of two members F

6
 and F

8
, because 168 = 8 x 21. Moreover, according 

to the directions for performance, the duration of the piece is around 5 minutes 
(once again the Fibonacci number). 

Finally, an incentive for a sophisticated joke manipulating with Fibonacci 
numbers appears in the title Clapping Music. It is because the sum of letters is 
13, and each word is made up of 8 or 5 letters. Here, I would end the search for 
Fibonacci and other mathematical phenomena in music with the reference to the 
Renaissance concept of homo sapiens as homo ludens (Latin – the playing man). 
Johan Huizinga who published the book Homo Ludens (The Playing Man) in 
1938 thoroughly investigated the concept of “the playing man” as the concept 
of the theory of the game. Hermann Hesse wrote the following about the rule of 
the game:

[T]he Glass Bead Game player plays like the organist on an organ. And this organ 
has attained an almost unimaginable perfection; its manuals and pedals range over 
the entire intellectual cosmos; its stops are almost beyond number. Theoretically this 
instrument is capable of reproducing in the Game the entire intellectual content of 

the universe.

The application of various numerical operations and calculations to a music 
composition – why not an interesting and sophisticated game, that proves the 
intersection of music and mathematics?
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Summary

In this paper the author considers an interdisciplinary dialogue between music and math-
ematics, emphasizing the role of the Fibonacci principles in the context of musical com-
positions. The article presents three analytical cases – Chopin’s piano prelude, Bourgeois’ 
composition for organ and Reich’s minimalistic piece, attempting to render music com-
position structure to the logic of Fibonacci numbers.


