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the language of mathematics closer to elementary musical tools such as rhythm, 
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metre, mode, and spectrum have yielded results in several publications: �rst, in 
my doctoral artistic project titled Primena mikrotonalnosti (a) u instrumentalnoj 
blisko-isto�noj�i�balkanskoj�mu�ici�folklorne�provenijencije,�te�(b��u�instrumen-
talnoj,� kamernoj� i� orkestarskoj�mu�ici�akusti�kog� tipa�u� savremenoj� �apadnoj�
umetni�koj�mu�ici� (poku�aj��asnivanja� jedne�autonomne�stvarala�ko-kompo�i-
torske koncepcije (The Application of Micro-tonality (a) in Middle Eastern 
and Balkan Instrumental Folk Music and (b) in Western Acoustic Instrumen-
tal, Chamber, and Orchestral Music (An Attempt at Founding an Autonomous 
Creative-compositional Conception), 2014) and (2) Spektralna trigonometrija 
(�asnivanje� univer�alne� mu�i�ko-matemati�ke� anali�e� (Spectral Trigonometry 
(Establishing a Universal Music-Mathematical Analysis) from 2017.

Thus posited, the discipline of mathematical music analysis rests on the as-
sumption of a link between mathematics, speci�cally geometry on the one hand, 
and music on the other. Both studies mentioned above are based on the method 
of projecting individual harmonics of the spectrum.1 

1.�The�Projection�Method

The projection of intervals or chords is a procedure whereby one and the same 
elementary structure is retained, but its function is replaced. The vertical con�gu-
ration of two different pitches (harmonic interval) or that of three or more differ-
ent pitches (harmonic chord) is projected into the hori�ontal con�guration of two 
different pitch lengths (projected interval) or that of three or more different pitch 
lengths (projected chord). Function replacement denotes the replacement of a 
harmonic ratio (identi�ed by height determined by two points in space) by means 
of a projector into a new position – a position delineated by two points in time 
determined by the projected length, from which one may observe, de�ne, and 
metrically calculate the propagation velocity of a given tonal ratio (or several of 
them). Therefore, a harmonic interval now comprises a unique relation: original 
pitch – projected length. The next step involves the establishment of a causal re-
lation between three basic functions: pitch-length-velocity – a relation that, from 
the vertical perspective of harmony, already exists between any two harmonics 
in the spectrum. By means of function replacement, the newly acquired projected 
intervals and chords establish a new order in the system of proportions. 

A projected harmonic octave, determined by the ratio between the second 
harmonic and the fundamental, would produce a rhythmic octave, constituted 

1 This concerns an abstract image of a projector that translates superimposed harmonics (the 
partials of an arbitrary fundamental) onto the metric-rhythmic plane. For more on the projec-
tor and the projection method, see the author’s DMA dissertation, 115–122. 
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by two equal rhythmic units. The projection method entails the differentiation 
of spectral space into four regions. The ratio between any individual harmon-
ic and the fundamental is called absolute pitch. Only the second harmonic has 
absolute pitch only, in relation to the fundamental, and no relative pitch. The 
ratio between a higher and lower harmonic is called relative pitch. For instance, 
a relative pitch will take shape in the ratio between the third and second har-
monic. Further, every harmonic contains a collection of intervals comprising all 
ratios between the higher and every lower harmonic (e.g. the relative pitches 
of the �fth harmonic: 5:4, 5:3, and 5:2), as well as in relation to the fundamen-
tal (the absolute pitch of the �fth harmonic: 5:1). In vertical projection, the oc-
tave intersects with the spectrum at even-numbered harmonics (4:2 or 6:3 or 8:4 
etc.), which means that all relative pitches that are less than half the value of 
the fundamental will always be on the so-called left side of the spectrum (e.g. 
the relative pitches of the �fth harmonic to the left: 5:4 and 5:3), starting from 
the third index number. Those relative pitches that exceed half the value of the 
fundamental will appear with the absolute pitch of each individual harmonic on 
the right-hand side of the spectrum (the relative and absolute pitches of the �fth 
harmonic on the right-hand side of the spectrum: 5:2 and 5:1). The relative pitch 
of the third harmonic is a perfect �fth (3:2), located on the left-hand side of the 
spectrum, while the absolute pitch of the third harmonic’s collection of intervals 
is a perfect twelfth (3:1), located on the right-hand side of the spectrum. In the 
fourth harmonic’s collection of intervals the relative pitch is a perfect fourth 
(4:3) on the left-hand side, while the absolute pitch is a perfect �fteenth (4:1) 
located on the right-hand side of the spectrum. The principle remains consistent 
further up and down the right- and left-hand side of higher harmonics. 

Comparing the left- and right-hand sides of the spectrum is justi�ed by fur-
ther examination of metric progression and rhythmic sequencing by means of 
projecting collections of intervals from the referential systems of individual har-
monics in the spectrum. On the left-hand side of the spectrum, projecting the 
ratio of any two harmonics will always yield an iamb, whereas on the right-hand 
side the result will always be a trochee. Both of them consist of projected inter-
vals. In a metric ratio of 3:2 a rhythmic �fth is an iamb, whereas in a 3:1 ratio a 
rhythmic twelfth is a trochee. If we make a rhythmic crotchet (quarter-note) the 
fundamental of the spectrum and the basic measuring unit, an iamb would equal 
a triplet quaver (eighth-note) and a triplet crotchet (1/3 + 2/3). In that regard, 
an iamb and trochee are measurable in thirds, because the longer part is twice 
longer than the short part. In a metric ratio of 4:3 a rhythmic fourth is likewise 
equivalent to an iamb, while in a 4:1 ratio a rhythmic double-octave is again 
equivalent to a trochee. Again, if we make a rhythmic crotchet the fundamental 
of the spectrum, an iamb will equal a rhythmic semiquaver (sixteenth-note) and 
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a rhythmic dotted quaver (1/4 + 3/4). An iamb and trochee would now be mea-
surable in quarters, because the longer part would be three times longer than the 
shorter part.

The projection method is also applicable on the other side of the spectrum, 
which extends inversely, mirror-like, below the fundamental of the spectrum. 
This comprises the sub-harmonics, which are derived by means of the old Py-
thagorean procedure known as lambdoma, whereby the denominator and numer-
ator of the fraction that constitute the value of a given harmonic in the higher 
region of the spectrum switch places; in concrete terms, producing the other, 
inversely proportional value of one and the same elementary structure. For the 
measuring ratio of a perfect �fth (3:2), from the perspective of the upper region 
of the spectrum, the sum of intervals equals 1/3 + 2/3. For the measuring ratio of 
a perfect �fth (3:2) from the perspective of the lower region of the spectrum the 
ratio of intervals equals 1+2. The basic metric segment in the projection of the 
second and third harmonic (1/3) is inversely proportional to metric length in the 
projection of the second and third sub-harmonics (3/1). For the measuring ratio 
of a perfect twelfth (3:1) from the perspective of the upper spectrum, the sum of 
intervals equals (2/3 + 1/3). For the measuring ratio of a twelfth (3:1) from the 
perspective of the lower region of the spectrum the sum of intervals equals (1 + 
1/2). The basic metric segment in the projection of the third harmonic in relation 
to the fundamental (2/3) is inversely proportional to the metric duration in the 
projection of the third sub-harmonic in relation to the fundamental (3/2).

Therefore, the terms upper-left/right (1) and lower-left/right (2) serve to 
identify the spectral region of any given ratio between two harmonics or sub-har-
monics. The principle remains the same throughout the right- and left-hand side 
of the upper harmonics and sub-harmonics. 

2.�The�Measuring�of�Spectral�Angles�and�Triangles

The German mathematician, astronomer, and astrologer Johannes Kepler, 
(1571–1630) “compared circles and strings and reasoned that consonant inter-
vals are only those that stem from polygons that may be inscribed in a circle 
(using a ruler and compass). A string is shaped into a circle, the �gure divides 
the circle into segments that one compares to one another to de�ne intervals. 
The triangle thus corresponds to the interval of the �fth, because it divides the 
string by putting one segment into proportion with two segments or one segment 
into proportion with the entire string, which means the ratios of 2:3 and 1:3. On 
the basis of this proof, Kepler could claim that harmonic ratios stemmed from 
angular velocity (the size of the angle traversed by the planets around the Sun 
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in a given amount of time), and not, as was constantly repeated since Antiquity, 
from linear distances and velocities”.2 

This proof by Kepler also underlies the measuring of the angles of spectral 
intervals on both sides of the lower and upper region of the spectrum.3 Musi-
cal notation is read and interpreted from left to right, in contrast to the quad-
rants of the Cartesian coordinate system. In a rhythmic projection, the octave 
as the second harmonic is (1) faster (equalling 1/2) or slower (equalling 2/1) 
than the velocity of the fundamental; and/or (2) shorter (equalling 1/2) or longer 
(equalling 2/1) than the length of the fundamental. In this context, there will be 
two perspectives for one and the same phenomenon under observation – a phe-
nomenon accommodating a change in the position of the second, or, in general 
terms, any harmonic in relation to the fundamental. Therefore, the fundamental 
is de�ned as the referential body, and the harmonic along with the fundamental 
(and its collection of intervals) as the referential system. Both the octave above 
and the octave below the fundamental constitute the coordinates that determine 
the trajectory whereby a given harmonic revolves around the fundamental; we 
may therefore conclude that the second harmonic, too, even though it has no col-
lection of intervals that would allow us to differentiate between its relative and 
absolute pitch, still constitutes a referential system. From the �rst perspective, 
we might observe that the second harmonic revolves around its centre/funda-
mental and rotates around its axis faster (1/2) than the axial rotation of the funda-
mental (1/1), but revolves around the fundamental in a durational value twice as 
long (2/1) as that with which we determine the proximity of the harmonic to the 
referential body. From the second perspective, we might observe that the same 
harmonic circles around its centre-fundamental and rotates around its axis more 
slowly (2/1) than the axial rotation of the fundamental (1/1), but makes a full cir-
cle around the fundamental in a durational value two times smaller (1/2) than the 
value we use to determine the distance of the harmonic from the referential body.

If we compared the motion of the harmonic with that of a material point 
along a circle in the referential system of the second harmonic, bearing in mind 
that we took the � geometrical constant to serve as the line segment of the funda-
mental,4 we might note that the radius vector of this point produces the follow-
ing angles and angular displacements: ��: (1) �/2 rad. corresponds to an angle of 
900 i.e. a convex (right) angle or the projected angle of a rhythmic quaver against 
a rhythmic quaver� (2) � rad. corresponds to an angle of 1800 i.e. a straight angle, 

2 Filip Vendriks, Muzika u renesansi, Belgrade, Clio, 2005, 78.
3 Dragan Latinčić, Mikrointervali u spektralnoj geometriji, Belgrade, Zadu�bina Andrejević, 
2015, 63–73. 
4 The value of the fundamental in this projection equals a rhythmic crotchet. 
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that is, the line segment of the fundamental (which equals a rhythmic crotchet); 
(3) 3�/2 rad. corresponds to an angle of 2700 i.e. a concave angle or the project-
ed angle of a rhythmic minim (a rhythmic crotchet against a rhythmic crotchet).

If we compared the movement of a harmonic with that of a material point 
along a circle in the referential system of the third harmonic, we would observe 
that its radius vector outlines the following angles and produces the following 
angular displacements ��: (1) �/3 rad. corresponds to an angle of 600 i.e. a con-
vex (acute)  angle that is the projected angle of a triplet quaver against a triplet 
crotchet� (2) 2�/3 rad. corresponds to an angle of 1200 i.e. a convex (obtuse) 
angle that is the projected angle of a triplet crotchet against a triplet quaver; (3) 
4�/3 rad. corresponds to an angle of 2400 i.e. a concave angle that is the pro-
jected angle of a rhythmic crotchet against a rhythmic quaver� and (4) 5�/3 rad. 
corresponds to an angle of 3000 i.e. a concave angle that is the projected angle of 
a rhythmic crotchet against a rhythmic minim.

The �rst angular displacement is identi�ed with the interval of the �fth in 
the upper region of the spectrum (3:2) as well as its metrical-rhythmic projection 
(which also applies to all other intervals of the spectrum). The perfect-�fth angle 
(600) would correspond to one third of the length of an arc circumscribed around 
an equilateral triangle – which would equal 1200. This length would equal one 
third (600) of the half-perimeter of the circle (1800). The second angular dis-
placement is identi�ed with the interval of a perfect twelfth in the upper region 
of the spectrum (3:1). The perfect-twelfth angle (1200) would correspond to two 
thirds of the length of the arc of a circle circumscribed around an equilateral 
triangle – which would equal 1200. This length would correspond to two thirds 
(1200) of the circle’s half-perimeter. The third angular displacement (2400) is 
identi�ed with the interval of a perfect twelfth in the lower region of the spec-
trum (3:1) as the difference between a full angle and the upper-spectrum per-
fect-twelfth angle (3600 – 1200), and the fourth angular displacement (3000) is 
identi�ed with the interval of a perfect �fth in the lower region of the spectrum 
(3:2) as the difference between a full angle and an upper-spectrum perfect-�fth 
angle (3600 � 600). 

The unit circle of the spectrum would have to be assumed to be in�nite. 
The reason is that there is an array of harmonics higher than the 16th index num-
ber of the spectrum that are rami�ed in the same exponential progression as the 
lower ones. The circumference of the angles of upper-region spectral intervals 
is derived by having the diameter of the fundamental serve as the � geometric 
constant. 

This way, one may derive the angles of the following partial spectral in-
tervals: minor third (6:5=300), major third (5:4=360), perfect fourth (4:3=450), 
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perfect �fth (3:2�600), major sixth (5:3=720), octave (2:1=900), major tenth 
(5:2=1080), perfect twelfth (3:1=1200), double octave (4:1=1350), major seven-
teenth (5:1=1440), super-twelfth (6:1=1500), and so on.

The circumference of the angles of spectral intervals in the lower region of 
the spectrum is performed counter-clockwise from the third quadrant. This way, 
one may derive the angles of the following spectral summation intervals: su-
per-twelfth (6:1=2100), major seventeenth (5:1=2160), double octave (4:1=2250), 
perfect twelfth  (3:1=2400), major tenth (5:2=2520), octave (2:1=2700), major 
sixth (5:3=2880), perfect �fth (3:2�3000), perfect fourth (4:3=3150), major third 
(5:4=3240), minor third (6:5=3300), and so on. 

A chord is the sum of two intervals. Projection generated two intervals only 
in the referential system of the third harmonic (two in the upper region of the 
spectrum: 1/3 + 2/3 and 2/3 + 1/3; and two in the lower region of the spectrum 1 
+ 2 and 1 + 1/2). If two interval ratios were superimposed in the projected inter-
val constellations, this would produce a projected chord, in concrete terms, the 
rhythmic chord of the third harmonic. Therefore, superimposing the ratios that 
applied to the interval constellations of the collection of intervals of the third 
harmonic mentioned above, (1/3 + 2/3) and (2/3 + 1/3), would produce a unique 
relation: (1/3 + 1/3 + 1/3). The projected chord now makes a planar triangle that 
would be equilateral in the referential system of the third harmonic (with equal 
angles): 600 + 600 + 600. (Figure 1)

The respective relations between a higher harmonic and harmonics below 
it may be practically explained using the example of the three sides of a trian-
gle. This would be a chordal triangle comprising three independently isolated 
frequencies originating from an arbitrarily chosen fundamental. These frequen-
cies would constitute the intersections of metrical length – length that could be 
demonstrated by means of a projector, using mathematical formulations of met-
rical-rhythmic distances. The next task would concern the identi�cation of both 
entities. The �rst entity would comprise three isolated frequencies, which would 
consist of the vertices of a planar triangle. The second entity would comprise the 
sides (edges) of the triangle as a metric length in the projection of a harmonic ra-
tio. Both entities would thus come together in the geometric �gure of a triangle 
with all of its planimetric and trigonometric characteristics.

This task also entails (1) establishing methods for constructing right, ob-
tuse, and acute musical triangles as well as projections of the ratios between the 
sides, which is recognized in trigonometry as the angular function of these scalar 
triangles: the sine, cosine, and so on; as well as (2) the establishment of methods 
for constructing spectral and scalar (intonation-temporal) trigonometric circles 
with their function graphs. 
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3.�Applying�the�Pythagorean�Theorem�to�the�Temporality�of�Rhythmic�
Projections of Individual Harmonics in the Spectrum

Using the method of metric-rhythmic projection, it is possible to prove the ap-
plicability of the Pythagorean Theorem primarily with respect to the temporality 
of individual harmonics of the spectrum. The formulation derived would be ap-
plicable via the �rst Pythagorean triple (as well as all other Pythagorean triples), 
as follows: (3/x)2 + (4/x)2 = (5/x)2. The denominator serves to enable the recog-
nition of the partials of the fundamental that pertain to the system of the given 
harmonic in the spectrum. If we took one sixth of a given individual relation 
as the numerator, that would mean that the quadrant of the described structure 
would be recognisable from the referential system of the sixth harmonic: (3/6)2 
+ (4/6)2 = (5/6)2. If we simplify the formulation to: (1/2)2 + (2/3)2 = (5/6)2 we 
may see that the sum of squares constructed on the octave and the twelfth equals 
a square constructed on the super-twelfth. If we take a rhythmic crotchet as the 
fundamental of the spectrum, a triplet semiquaver could become the common 
denominator for squares constructed on the octave, twelfth, and super twelfth.

The “octave square” whose common multiple is a triplet semiquaver, which 
by means of the number 3 (the �rst number in the �rst Pythagorean triple) forms 
the adjacent side of the octave triangle, would equal nine triplet semiquavers. We 
may see that the octave square is a summation rhythmic twelfth (3/2) – i.e. (32 � 
1/6 = 3/2). 

The “twelfth square”, whose common multiple is likewise a triplet semiqua-
ver, which by means of the number 4 (the second number in the �rst Pythagorean 
triple) forms the opposite side of the triangle of the twelfth, would equal 16 trip-
let semiquavers. We may see that a square on the twelfth is a summation minor 
sixth (8/3) – i.e. (42 � 1/6 � 8/3).

Finally, the “super-twelfth” square, whose common multiple again is a trip-
let semiquaver, which by means of the number 5 (the third number in the �rst Py-
thagorean triple) forms the hypotenuse of the super-twelfth triangle, would equal 
25 triplet semiquavers. We may see that the super-twelfth square is a rhythmic 
semibreve (whole note) tied to a triplet semiquaver (25/6). (Figure 2)

Rhythmic factors are substituted by means of mathematical analysis of the 
trigonometric functions. Since this concerns a Pythagorean right triangle | 3 4 5 |, 
the angle formed by the octave and twelfth sides is 900, the angle formed by the 
twelfth side and super-twelfth hypotenuse acquires a new value in relation to the 
value of the minor-third referential angle (300) and equals � = 300 + 60 52’12’’, 
while the angle formed by the super-twelfth hypotenuse and octave side acquires 
a new value in relation to the value of the perfect-�fth referential angle (600) and 
equals the remaining 600 � 60 52’12’’. The trigonometric functions of the acute 
angle (� = 360 52�12��) of a right triangle with its sides forming the �rst Pythago-
rean triple are determined as follows.
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Figure 2  – Applying the Pythagorean Theorem on the right angle of the sixth harmonic 
of the spectrum

The sine of the angle – sin � is the ratio between the opposite side and the 
hypotenuse, more precisely, the quotient of an octave and a super twelfth or 
�(1/2) / (5/6)�. The quotient of these two fractions is 3/5. 

The cosine of the angle – cos � is the ratio between the adjacent side and 
the hypotenuse, more precisely, the quotient of a twelfth and a super-twelfth or 
�(2/3) / (5/6)�. The quotient of these two fractions is 4/5. 
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The tangent of the angle – tan � is the ratio between the opposite and ad-
jacent sides, more precisely, the quotient of an octave and a twelfth or [(1/2) / 
(2/3)�. The quotient of these two fractions is 3/4.  

The cotangent of the angle – cot � is the ratio between the adjacent and 
opposite sides, more precisely, the quotient of a twelfth and an octave or [(2/3) / 
(1/2)�. The quotient of these two fractions is 4/3.  

The secant of the angle – sec � is the ratio between the hypotenuse and ad-
jacent side, more precisely, the quotient of a super twelfth and twelfth or [(5/6) / 
(2/3)�. The quotient of these two fractions is 5/4.  

The cosecant of the angle – csc � is the ratio between the hypotenuse and 
the opposite side (edge), more precisely, the quotient of a super twelfth and an 
octave, �(5/6) / (1/2)�. The quotient of these two fractions is 5/3. 

The ratio between the intervals of the collection of intervals of the sixth 
harmonic in the spectrum, comprising the octave (6:3), twelfth (6:2), and super 
twelfth (6:1), established via the Pythagorean Theorem, which can be expressed 
with the following mathematical relation: (1/2)2 + (2/3)2 = (5/6)2, may now be 
applied, following the same principle, to the collections of intervals of other 
individual harmonics in the spectrum. From among several examples, we will 
look at one more.

If we take one fourth of a given individual ratio between two harmonics 
as our denominator that would mean that the square of that structure would be 
recognisable from the referential system of the fourth harmonic: (3/4)2 + (4/4)2 
= (5/4)2. If we take one rhythmic crotchet as our measuring unit (1), via the �rst 
Pythagorean triple |3 4 5|, a rhythmic crotchet is multiplied by means of the Py-
thagorean Theorem, which adheres to the following rule: a2 + b2 = c2, in the fol-
lowing way: (3 × one rhythmic semiquaver)2 + (4 × one rhythmic semiquaver)2 
= (5 × one rhythmic semiquaver)2.

It follows that the sum of a squared dotted rhythmic quaver and a squared 
rhythmic crotchet equals the square of a rhythmic crotchet tied to a rhythmic 
semiquaver. The mathematical formula of the �rst Pythagorean triple: 32 + 42 = 
52 in the referential system of the fourth harmonic (which would apply to a per-
fect fourth) is equivalent to: (3/4)2 + 12 = (5/4)2.

This formulation is identical to that found in an ancient Egyptian papyrus 
discovered at Kahun, from around 2000 BC. Among other things, this papyrus, 
dated to the time of Egypt’s 12th dynasty, mentions the relation linked above to 
the referential system of the fourth harmonic of the spectrum, by applying the 
Pythagorean Theorem: 12 + (3/4)2 = (1 ¼)2: “The Egyptians also knew the nu-
merical relation for special cases, for a papyrus of the 12th dynasty (c. 2000 B. 
C.), discovered at Kahun, refers to four of these relations, one being 12 + (3/4)2 
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= (1¼)2. It was among these people that we �rst hear of the ‘rope stretchers�, 
those surveyors who, it is usually thought, were able by the aid of this property 
to stretch a rope so as to draw a line perpendicular to another line, a method still 
in use at the present time”.5 (Figure 3)

Figure 3 – Applying the Pythagorean Theorem to the perfect-fourth triangle of the 
fourth harmonic of the spectrum

By analogy to the �rst Pythagorean Theorem, we may now construct spec-
tral triangles from higher triples, which are likewise governed by the Pythagore-
an Theorem. The principle is the same. Choosing a projected rhythmic interval 
as the measuring unit and a higher triple enables the analysis of new interval side 
lengths, as well as the intersections of those triangle sides (edges) at new angles.

5 D. E. Smith, History of Mathematics (Volume II). Special Topics of Elementary Mathemat-
ics, Boston, Ginn and Company, 1, 1925, 288.
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4.�Isometric�Transformations�of�Spectral�Triangles

Relations applicable to the spectrum may be consistently transformed into the 
scalar and temporal system. So far, we have observed spectral geometric entities 
on the basis of projections of metric-rhythmic structures. We will now perform 
the process of transforming the newly acquired geometric entities (primarily tri-
angles) into a system of musical scales. Using Aristoxenus’s equivalence of dis-
tance and height, we may observe that the Pythagorean Theorem applies to scale 
intervals (chords) as well. Observing Aristoxenus’s (´A��σ���ε���) empirical di-
vision of the octave into six equal whole tones and 12 semitones, we may draw 
an analogy with the sharpening of scale resolution in the following way: we 
would divide the octave scale within the referential system of the third harmonic 
of the spectrum into 18 equal segments – third-tones, while the scale within the 
referential system of the fourth harmonic in the spectrum would be divided into 
24 equal segments – quarter-tones.6 

Transformation is a function whereby individual points are mapped onto 
some other points. The type of transformation that preserves the same distances 
and angles is called isometric transformation. Isometric transformation of pro-
jected metric lengths of original harmonics is a function that maps individual 
spectral frequencies as intonation points (retreats) within an arbitrarily chosen 
musical scale. Regarding this transformation, one should note that the intonation 
points of retreat match the polygonal line of the spectral metric-rhythmic pro-
jection. A series of three (intonative-temporal) line segments are linked together. 
The process of isometric transformation unfolds in several different stages. 

In the �rst stage, the �rst Pythagorean triple �3 4 5� is isolated. Then, further 
triples are generated on the basis of the �rst, original triple, by multiplying it with 
the number of each harmonic (from the second to the 16th), for instance: |(3 × 2) 
(4 × 2) (5 × 2)| which equals |6 8 10| or |(3 × 3) (4 × 3) (5 × 3)| which is |9 12 15| 
and so on. In the second stage, the numbers of the �rst Pythagorean triple �3 4 5� 
and those of the following triples derived from it, |6 8 10| |9 12 15|, are divided 
by their common denominator, which is also the number of the harmonic. This 
denominator sharpens scalar (intonative) resolution (6/3, 8/3, and 10/3). In the 
third stage, scale values may be de�ned by distance from the next pitch (that is, 
the pitch of an individual point in the scale triangle). The pitches successively 

6 Only in theory, one cannot exclude an even �ner fragmentation of intonative resolution, 
which means that the octave scale of the �fth harmonic could be divided into 30 equal �fth-
tones and that of the sixth harmonic into 36 equal sixth-tones. This is mentioned here on the 
assumption that intonative displacements of this kind of sophistication may be found in Mid-
dle Eastern and North African folk music. 
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stack up the farther we get from their common multiple (fundamental), which 
suggests that each new pitch becomes the starting (zero-) point in relation to the 
preceding one.

The superiority of this type of transformation, which is performed by jux-
taposing pitches, is re�ected in the fact that it offers the multiple possibility of 
constructing a triangle with the same ratios between its sides, substituting the 
rhythmic and intonative factors in the planimetry. The superiority of this type 
of transformation is also re�ected in that the vertices of an isosceles triangle or 
the vertices of an equilateral triangle are distinguished by different intonation 
distances. (Figure 4)

Figure 4 – Isometric transformations of spectral triangles

This is a good place to remember some words by the Serbian musicologist 
Dragutin Gostuški and link the example of isometric transformation of a tempo-
ral-intonation triangle with the ratio between the numbers 3, 4, and 5, used by 
ancient Greek instrument builders to tie the strings of a lyre. 

One cannot even ask the question whether and to what degree the mathematical 
analogy between the figural and the musical is justified before answering the ques-
tion about the cause of matching between a physical phenomenon and elementary 
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relations among natural numbers. For, we may agree with Crocker that the fact that 
3, 4, and 5, that is, the only numbers that lend the Pythagorean Theorem a rational 
solution, simultaneously match the ratios of the Egyptian ‘holy triangle’, the princi-
ple that ancient Greek instrument builders used to tie the strings on the lyre, and the 
frequency ratio of the European major chord is a ‘tautology�. We may therefore say 
that musical intervals were chosen according to numeric ratios and not that those 
ratios were later discovered. However, the question of harmonics does not yield to 
choice; and the question lies therein. A satisfactory answer has yet to be found.7

In Figure 4, the sixth example in the �rst row shows the juxtaposition of 
the temporal distances of a right triangle (c = 5/2; b�= 4/2; a = 3/2), causing a 
displacement of the frequencies (the vertices of this triangle) according to the 
following con�guration: (A = f1; C � �1; B = c2). Since this is a right triangle, the 
orthocentre of this scale triangle would be its altitude (height), c2. If we make c1 
the starting position of the scale, isometric transformation will produce a sonori-
ty comprising f1 – a perfect fourth (the fourth harmonic) from the starting posi-
tion, a1 – a major third (the �fth harmonic) from the starting position of f1, and 
c2 – a minor third (the sixth harmonic) from the frequency of a1, therefore 6:5:4, 
which is recognized in European music theory precisely as the European major 
triad. This is yet another reason why it is important to observe the principle of 
isometric transformation by means of juxtaposing frequencies.

The procedure of isometric transformation proves the applicability of the 
Pythagorean as well as many other theorems in trigonometry, such as the sine, 
cosine, and tangent theorems, as well as Mollweide’s formula. My book Spek-
tralna� trigonometrija� (�asnivanje� univer�alne� mu�i�ko-matemati�ke� anali�e��
offers insight into the method of constructing musical �gures (triangles) with 
concise and minute mathematical derivatives and formulae. The procedure of 
isometric transformation opens the possibility of constructing right, acute, and 
obtuse angles within musical scales with all the accompanying planimetric and 
trigonometric characteristics.8 

5.�Applying�the�Trigonometric�Functions�to�the�Scalar�Musical�Plane

The sine is a curve; in music, a glissando could be used to describe a curve. If 
the sine curve of a glissando rises and falls in the �rst and second quadrant, the 
glissando will rise and fall above the horizon of the fundamental. If the sine falls 

7 Dragutin Gostuški, Vreme umetnosti: Prilog zasnivanju jedne opšte nauke o oblicima, 
Belgrade, Prosveta, 1968, 242. 
8 Dragan Latinčić, Spektralna trigonometrija�(�asnivanje�univer�alne�mu�i�ko-matemati�ke�
analize), Belgrade, Zadu�bina Andrejević, 2017, 119–132.
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and rises in the third and fourth quadrants, the glissando will fall and then rise 
beneath the horizon of the fundamental. The sine accommodates all values from 
one whole step (a major second) above the starting position in the interval [0, 
�� for the �rst two quadrants as well as all values from one whole step (a major 
second) above the starting position in the interval ��, 2�� for the other two quad-
rants. If we take the horizon of the fundamental as the starting position of the 
scale, for instance, c1, we may determine the sine function co-domain �1,�1�. It 
would equal the scale value of a major third [1 = d1, �1 � b�. If the sine accom-
modates values up to a whole degree for each quadrant, that would mean that a 
half-step would equal 300 on the sine graph.

The formula for calculating the sine intonation retreat point in a 
trigonometric unit circle whose co-domain is a major third is the product of the 
desired frequency and the sixth root of 2 (because the octave is divided into six 
equal parts) raised to the power of the sine of the chosen interval angle.

For instance, for the frequency of c1 (261.63 Hz) the corresponding val-

ue will be   261.63� 26 sin90
= 293.66 Hz, which equals one distance (d1) of 

the scale sine from the starting frequency (c1); or,   261.63� 26 sin30
= 277.18 Hz, 

which is 1/2 of the distance (c sharp1) from the starting frequency (c1); or, 

 Hz, which is 1/4 of the distance (c1 + 1/4) from 
the starting frequency (c1), and so on.

The sine relations in each quadrant are veri�ed with the formula for calcu-
lating the sine intonation retreat point. To verify a quarter of the distance above 
the starting scale position (c1 + 1/4 for the frequency of c1 = 261.63 Hz), from 
the �rst and second quadrants, the following comparison is used: 

 Hz. 

It is similar with calculating one half of the distance (c-sharp1) from the frequen-

cy of c1:  Hz. 

In general, the formula for any intonation trigonometric retreat in a trig-

onometric unit circle would be as follows:     f � 26 sin|cos|tan|cot|sec|csc
 with f 

denoting frequency in Hz and   26  the power base of the unit circle with whose 
co-domain is a major third whence the intonation trigonometric retreat is per-
formed, while the power of exponentiation would be a trigonometric function of 
the angles.

For the sine function, all intervals in the third and fourth quadrants, below 
the hori�on of the fundamental, have a negative pre�x, i.e. have a negative dis-
tance in relation to the starting scale position.
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A glissando could also be formulated with the cosine – sliding from one 
pitch to another. If its cosine curve falls in the �rst and then also in the second 
quadrant, the glissando will fall above and then also below the horizon of the 
fundamental. If the cosine curve rises in the third and then also in the fourth 
quadrant, the glissando will rise below and then also above the horizon of the 
fundamental. We may note that the cosine accommodates all values from two 
whole steps (a major third) above the starting position in the interval �0, �� for 
the �rst two quadrants and likewise all values from two whole steps (a major 
third) below the starting position in the interval ��, 2�� for the other two quad-
rants. We may therefore conclude that the cosine co-domain is the same as it was 
for the sine function: a major third.

The formula for calculating the cosine intonation retreat in a trigonometric 
unit circle whose co-domain is a major third is the product of the desired fre-
quency and the sixth root of 2 (because the octave is divided into six equal parts) 
raised to the power of the cosine of the chosen interval angle.

For instance, for the frequency of c1 (261.63 Hz) the corresponding val-

ue will be \  261.63� 26 cos0
= 293.66 Hz, which equals one distance (d1) from the 

starting frequency c1; or,  Hz, which is 1/2 of the dis-

tance (c-sharp1) from the starting frequency c1; or,  
Hz, which equals 1/4 of the distance (c1 + 1/4) from the starting frequency of c1, 
and so forth. 

The cosine relations in each quadrant may be veri�ed with the formula for 
calculating the cosine intonation retreat. Given that the cosine is negative in the 
second and third quadrants, we may verify one quarter-distance below the start-
ing scale position (for example, c1 � 1/4 for the frequency of c1 = 261.63 Hz), 
from the second and third quadrant as follows:

 Hz, which is a quar-
ter-tone lower (c1 � 1/4) than the pitch height of c1. 

It is similar with a half-distance (b) from the frequency of c1: 

 Hz, which is a semitone lower (b) 
than the pitch height of c1. 

We may note that all intervals in the second and third quadrants below the 
hori�on of the fundamental have a negative pre�x, i.e. have a negative distance 
from the starting scale position. Negative intervals are marked only when ana-
lysing the trigonometric functions, in order to make clear the negativity of the 
function.
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The formula for calculating the tangent intonation retreat in a trigonometric 
unit circle whose co-domain is a major third is the product of the desired fre-
quency and the sixth root of 2 (because the octave is divided into six equal parts) 
raised to the power of the tangent of the chosen interval angle.

For instance, for the frequency of c1 (261.63 Hz) the corresponding value 

will be  Hz. A frequency of 293.66 Hz is (d1), that is, 
one distance above the starting frequency of c1. Therefore, we may note that one 
whole distance (a whole step) below the starting frequency of c1 (261.63 Hz) 

will be  H�. A frequency of 233.08 H� is (b �at), that 
is, one distance below the starting frequency of c1. 

The procedures and formulations described above bring us to the phenom-
enon of trigonometric counterpoint, where one and the same frequency (for in-
stance, the intonation distance – which is one step) would equal the sine, cosine, 
and tangent retreat, at different angles, of course. We may observe that for one 
whole scale degree above the diameter of the fundamental (d1 = 293.66 Hz) the 
corresponding value is: 

 Hz. For one 
whole scale degree below the diameter of the fundamental (b �at � 233.08 H�) 
the corresponding value is:  

 Hz. 
In the construction of a musical trigonometric circle, we observed that the 

sine and cosine curves were governed by their function co-domain. If the sine 
and cosine co-domain was ��1, 1�, sharpening a scale resolution to one sixth 
of a scale degree, we concluded that this co-domain equalled a major third, 
that is, that the entire unit circle belonged to the referential system of the �fth 
harmonic of the spectrum, because the major third is the referential interval for 
the referential system of this harmonic. Let us brie�y consider a trigonometric 
circle whose amplitude ��a, a� for the scale sine as well as the cosine graph 
would equal an octave.

If the sine and cosine amplitude equals ��3, 3�, sharpening the scale reso-
lution to one sixth of a scale degree, we will conclude that it spans an octave, 
that is, that the entire unit circle belongs to the referential system of the second 
harmonic of the spectrum. We come to this phenomenon by replacing the expo-
nentiation base with the trigonometric intonation retreat. If the base for a trigo-

nometric unit circle previously equalled   26 , for an amplitude spanning an octave 
it will now equal   2 . This would be the basis for an octave trigonometric circle.
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In general, we may derive an array of trigonometric circles by changing the 
exponentiation base that serves to expand (amplitude-wise) the interval diameter 
(or radius). For example, let us take the tangents of 450 and 1350 because their 
arguments are +1 and �1, which correspond to the values of the radius of a trig-
onometric unit circle at the tangent. Thus the diameter of the unit circle (b-�at � 
d1), that is, its radii are: �0, +1� � (c1, d1) and �0, �1� � (c1, b-�at). See the table.  

Table of trigonometric unit circles (the tangent of the first and second quadrants)

Scalar 
trigonometric 

circles

Formulae for calculating trig-
onometric intonation retreat 

points

Value of the 
trigonometric 
retreat point 

for c1 � 261�63 
H�

diameter and 
radius of scalar 

circle

1/2 step – major-
second circle

261.63 Hz
  � 212 tan 45 277.18 Hz c-sharp1

  � 212 tan 135 246.94 Hz b

whole step – major-
third unit circle

261.63 Hz 
  � 26 tan 45 293.66 Hz d1

  � 26 tan 135 233.08 Hz b flat

3/2 step – 
augmented-fourth 

circle
261.63 Hz 

  � 24 tan 45 311.13 Hz d-sharp1~e-flat1

  � 24 tan 135 220.00 Hz a

2 steps – minor-
sixth circle

261.63 Hz 
  � 23 tan 45 329.63 Hz e1

  � 23 tan 135 207.65 Hz g-sharp~a-flat

5/2 steps – minor-
seventh circle

261.63 Hz 
  � 212 5 tan 45 349.23 Hz f1

  � 212 5 tan 135 196.00 Hz g

3 steps – octave 
circle

261.63 Hz 
  � 2

tan 45
370.00 Hz f-sharp1

  � 2

tan 135
185.00 Hz f sharp
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7/2 steps – major-
ninth circle

261.63 Hz 
  � 212 7 tan 45 392.00 Hz g1

  � 212 7 tan 135 174.61 Hz f

4 steps – major-
tenth circle

261.63 Hz   � 23 2 tan 45 415.31 Hz a-flat1~g-sharp1

  � 23 2 tan 135 164.81 Hz e

9/2 steps – 
augmented-eleventh 

circle
261.63 Hz 

  � 24 3 tan 45 440.00 Hz a1

  � 24 3 tan 135 155.56 Hz e flat

5 steps – minor-
twelfth circle

261.63 Hz   � 26 5 tan 45 466.17 Hz b-flat1

  � 26 5 tan 135 146.83 Hz d

11/2 steps – 
augmented-twelfth 

circle
261.63 Hz   � 212 11tan 45 493.89 Hz b1

  � 212 11tan 135 138.59 Hz d flat

6 steps – double-
octave circle

261.63 Hz   �2
tan 45 523.26 Hz c2

  �2
tan 135 130.81 Hz c

Conclusion

Mathematical music analysis constitutes only the beginning of research in spec-
tral intervallic and spectral chordal relations through the language of mathemat-
ics (geometry, planimetrics, and trigonometry). I have also applied the method 
of projecting harmonics as well as the principles of constructing planar geomet-
ric �gures (primarily triangles) in my work as a composer.9 Working on a piece 
that might potentially be based on geometric �gures would entail applying var-
ious kinds of isometry, both direct and indirect, such as translation, axial re�ec-
tion, central symmetry, and central rotation. These procedures of composition 
are predicated on the introduction of a speci�c exact mode of musical creation 
and thought. 

9 The beginnings of the method outlined above may also be traced in certain segments of my 
work Batal, preludijumi��a�guda�ki�orkestar�(Batal: Preludes for String Orchestra), which 
was part of my doctoral artistic project, completed in 2014. 
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Summary

Many years of research in the field of micro-intervals in the theory and practice of Middle 
Eastern and North African folk music, as well as approximating the language of mathe-
matics to elementary tools of music have produced results in several publications by the 
author. All of them were based on the method of projecting individual harmonics of the 
spectrum.

Projecting intervals or chords is a procedure that preserves one and the same elementary 
structure, but replaces its function. The vertical configuration of two or three different 
pitches (harmonic interval or harmonic chord) is projected into a horizontal configuration 
of two or more tonal lengths (projected interval or projected chord).

A projected harmonic octave comprising the ratio between the second harmonic and the 
fundamental would produce a rhythmic octave, comprising two equal rhythmic units. The 
method of projection entails an ultimate differentiation of the spectral domain into four 
regions. The method is likewise applicable on the other side of the spectrum, which ex-
tends inversely, below the fundamental of the spectrum. These are the sub-harmonics, 
which are derived by means of the old Pythagorean procedure called lambdoma. Compar-
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ing the left- and right-hand side of the spectrum is justified with the further examination 
of metric progression as well as rhythmic sequencing, by means of projecting collections 
of intervals from individual referential systems of different harmonics in the spectrum. On 
the left-hand side of the spectrum, projecting super-individual relations between different 
harmonics will always yield an iamb, while on the right-hand side the result will always 
be a trochee.

Kepler’s proof of comparing circles and strings is the basis of measuring the angles of 
spectral intervals on both sides of the spectrum.

Using the method of metric-rhythmic projection, one may prove the applicability of the 
Pythagorean Theorem to the temporality of individual harmonics in the spectrum.  The 
formulation thus derived would be applicable by way of the first Pythagorean triple (as 
well as all other Pythagorean triples), as follows:(3/x)2 + (4/x)2 = (5/x)2. The denominator 
serves to enable the recognition of partial segments of the fundamental of the spectrum 
that pertain to the system of a given harmonic in the spectrum. If we took one sixth of a 
given super-individual relation as the numerator, that would mean that the square of that 
structure would be recognisable from the referential system of the sixth harmonic: (3/6)2 
+ (4/6)2 = (5/6).2 If we simplify the formulation to (1/2)2 + (2/3)2 = (5/6)2, we may con-
clude that the sum of squares formed on an octave and a twelfth equals a square formed 
on a super twelfth.

Relations applicable to the spectrum may be consistently transformed into the scalar and 
temporal system. On the basis of Aristoxenus’s equivalence of distance and height, we 
may observe that the Pythagorean Theorem may also apply in the framework of scale 
intervals and chords. The type of transformation that preserves original distances and 
angles is called isometric transformation.

The method of isometric transformation proves the applicability of the Pythagorean as 
well as many other trigonometric theorems, such as the sine, cosine, and tangent theorem, 

as well as Mollweide’s formula. 


